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A B S T R A C T

Forecasting future carbon emissions and carbon stocks under the influence of land-use changes will offer 
guidance for achieving urban carbon neutrality. However, a gap exists in the systematic combination of carbon 
emission forecasting and carbon stock forecasting to simulate the carbon neutrality path. Therefore, we intro-
duced a novel method for scenario forecasting of carbon neutrality, which can integrate dynamic future land-use 
and NPP data to forecast carbon stocks. CCUS technology was also considered. Shenzhen, a Chinese city with 
high carbon emissions, was chosen as our case study area. First, the LEAP model was employed for forecasting 
future carbon emissions. Subsequently, the PLUS method was utilized for forecasting land-use evolution. Then, 
the carbon stocks were estimated on the basis of land-use forecasting and NPP. Finally, we explored the potential 
of CCUS for realizing carbon neutrality under integrated carbon emission and land-use scenarios. The results 
indicate that Shenzhen’s future carbon emissions exhibit a tendency of an initial increase, followed by a decline. 
Due to the increase in ecological land, vegetation carbon stocks may increase slightly in farmland protection and 
ecological security scenarios. With the support of CCUS technology, the four scenarios are expected to achieve 
carbon neutrality before 2050. The scenarios presented in this study align more closely with future development 
trajectories and actual conditions, making them more informative for policy-making. In summary, the proposed 
framework would facilitate a comprehensive understanding of the pathways to achieving carbon neutrality goals.

1. Introduction

Climate change and greenhouse gas emissions pose severe challenges 
to humanity and have become pressing global issues (Lai et al., 2016; Lin 
& Zhu, 2021; Sha et al., 2020). To mitigate the adverse impact of these 
issues, many regions have endorsed environmental goals, including 
“carbon peaking” and “carbon neutrality” (Feng et al., 2015; Mahmood 
et al., 2023a; Mohsin et al., 2021). Carbon neutrality means that the 
anthropogenic carbon emissions produced in an area during a specific 
period are offset by natural and anthropogenic processes (e.g., vegeta-
tion uptake and carbon sequestration), thereby resulting in net zero 
carbon emissions. The pathways to carbon neutrality mainly involve 
reducing anthropogenic carbon emissions, increasing ecosystem carbon 
stocks, and promoting CCUS technology development (Liang et al., 
2024; Wu et al., 2024; Zhang et al., 2021). Due to the high cost and 
immaturity of CCUS, accurate forecasts of future carbon emissions and 

carbon stocks, combined with an investigation of CCUS technology’s 
potential, are critical for carbon neutrality (Cai et al., 2020; Hu et al., 
2019).

Direct methods for reducing anthropogenic carbon emissions mainly 
involve energy structure transformation, energy conservation and 
reduction, that is, increasing the share of renewable energy and fuel 
utilization efficiency (Du et al., 2024; Launay et al., 2021; Luo et al., 
2023). Therefore, future changes in carbon emissions for each economic 
sector can be forecasted by configuring different energy structures and 
utilization rates. To this end, previous studies have designed various 
future development scenarios by using econometric methods (Chai 
et al., 2022; Wen et al., 2022). LEAP is one of the most successful models 
in this field (El-Sayed et al., 2023; Li, L. et al., 2023). For example, 
Emodi et al. (2017) developed future scenarios with this model, pro-
posing strategic policies by adjusting industrial and energy structures. 
Cai et al. (2023) created both positive and negative future scenarios 

Abbreviations: LEAP, long-range energy alternatives planning; PLUS, patch-level land-use simulation; NPP, net primary productivity; CCUS, carbon capture, 
utilization and storage; InVEST, integrated valuation of ecological services and tradeoff.
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using the LEAP model to forecast Bengbu’s future carbon emissions. 
While carbon emission forecasting methods are relatively well estab-
lished, carbon stock forecasting still requires further investigation. In 
addition, few studies have systematically combined future carbon 
emission forecasting with carbon stock forecasting to explore the time-
line and procedures for realizing carbon neutrality.

Increasing carbon stocks is a critical approach to realizing net zero 
carbon emissions. Carbon stocks refer to the amount of carbon stored by 
vegetation and soil ecosystems. Vegetated areas (e.g., woodland and 
grassland) can convert carbon dioxide into carbohydrates through 
photosynthesis, which are subsequently stored in vegetation and soil. 
Therefore, carbon stocks are closely linked to land-use changes. Carbon 
stocks can be estimated through field investigations (Chuai et al., 2022; 
Quan et al., 2023), remote sensing observations (Bordoloi et al., 2022; 
Campbell et al., 2022; He et al., 2017), and ecosystem process modeling 
(Babbar et al., 2021; Feng et al., 2020; Xiang et al., 2022). Ecosystem 
process models are becoming increasingly prevalent in forecasting 
future carbon stocks because the first two methods are mainly suitable 
for monitoring past and present conditions (Tian et al., 2022; Wang 
et al., 2022). Due to the large computational complexity of some 
complicated ecosystem process models (e.g., Biome-BGC), previous 
studies have mainly used the InVEST model, which has a simpler 
structure (Babbar et al., 2021; Ghafoor et al., 2022; Jiang et al., 2017).

Since land-use conditions exert a dominant influence on carbon 
stocks, previous studies usually forecasted future carbon stocks by 
integrating the InVEST and land-use change simulation models. Some 
widely-used land-use change modeling methods contain the SLEUTH, 
CLUE-S, FLUS, and PLUS models (Cao et al., 2019; Guan et al., 2016; He 
et al., 2020; Wang et al., 2020; Wu et al., 2023). Specifically, Ghafoor 
et al. (2022) revealed the influence of urban land-use dynamics on 
carbon stocks by using cellular automata and InVEST models. Yang et al. 
(2020) forecasted the influence of future land-use dynamics on carbon 
stocks through the combined use of FLUS and InVEST models. However, 
the InVEST model largely relies on fixed carbon stock density scores. 
Specifically, the carbon stock density for a particular land-use category 
always remains spatially constant, which negatively affects the spatial-
ization of carbon stocks. Earlier research has demonstrated that NPP 
data were strongly associated with ecosystem carbon stocks at the grid 
scale (Chen et al., 2019; Huang et al., 2020; Li et al., 2022; Zhong et al., 
2023). Therefore, a combination of NPP-based carbon stock estimation 
and land-use change forecasting can address the above deficiencies.

As technology advances, the realization of carbon neutrality should 
focus not only on reducing carbon emissions and increasing carbon 
stocks, but also on the deployment of CCUS technology (Iqbal et al., 
2019; Mahmood et al., 2023b). CCUS can be used to effectively manage 
carbon emissions that exceed carbon stock capacity, thereby contrib-
uting to carbon neutrality. In fact, this technology must be adapted to 
the specific conditions of different regions to maximize its effectiveness 
(Li, L. et al., 2023; Yang et al., 2020). Nevertheless, prior research has 
concentrated on carbon emissions and carbon stocks, with limited 
integration of CCUS technology in the pursuit of carbon neutrality.

To sum up, the objectives of this research are twofold: (1) to 
dynamically adapt carbon stock densities based on NPP information and 
evaluate the future spatial distribution of carbon stocks at a grid scale 
and (2) to simultaneously consider carbon emission forecasting, carbon 
stock forecasting, and CCUS to explore the timeline and procedures 
needed for achieving carbon neutrality. In this regard, a novel meth-
odology integrating the LEAP and PLUS models to forecast carbon 
neutrality scenarios was proposed. First, the LEAP model was used for 
forecasting future carbon emissions under baseline, energy-saving, and 
green scenarios. Second, the PLUS method was employed to forecast 
future land-use evolution under several scenarios: natural development, 
farmland protection, and ecological security. The carbon stocks were 
estimated by combining the land-use forecasting outcomes and the NPP- 
based grid-scale carbon stock densities. Finally, we investigated the 
impact of CCUS technology on carbon neutrality under nine integrated 

scenarios (Fig. 1). The outcomes could provide policy guidance for the 
development of low-carbon urban societies.

2. Data and methods

2.1. Case study

Shenzhen is situated on the southern coast of Guangdong Province, 
China. This city is renowned for being one of the pioneering remarkable 
economic zones in China that has embraced “reform and opening up” 
policies. With a wide area of 1997.6 km2 and a permanent population of 
17.66 million in 2022, it is the first city in China to reach a 100 % ur-
banization rate. Shenzhen experiences a subtropical monsoon climate, 
with a yearly average temperature of 23.5 Celsius and a multiyear mean 
precipitation of 1948 mm. The carbon emissions of Shenzhen have been 
steadily increasing in recent years, reaching 44.57 Mt in 2020.

2.2. Data

The data needed in our analysis included socioeconomic statistics, 
energy consumption, land-use, and NPP data. The land-use maps (2010, 
2015, and 2020) at a resolution of 30 m were acquired from the Chinese 
Academy of Sciences, which exhibit an overall accuracy of 88.95 % in 
classification (Lin, Wang, Lin, & Li, 2025). Information on administra-
tive boundaries, residential construction, railways, and roads was ac-
quired from the China Geographical Information Resource Inventory 
Systems (https://www.webmap.cn). The SRTM-DEM (30 m resolution) 
was acquired from the Geospatial Data Cloud Service Platform (htt 
ps://www.gscloud.cn), and the slope and topographic relief were 
generated through the SRTM-DEM. The NPP data (30 m resolution) were 
obtained from the Global Resources Data Cloud Platform (http://gis5g. 
com/data/zbsj/NPP?id=2541). In this product, the MODIS NPP infor-
mation (MOD17A3HGF Version 6) of NASA has been downscaled 
through the well-recognized Carnegie-Ames-Stanford (CASA) ecosystem 
model (Song, S. et al., 2023; Yin et al., 2021). The socioeconomic and 
energy consumption data from 1980 to 2020 were acquired from 
Shenzhen Statistical Yearbooks, Chinese Municipal Statistical Year-
books, and Shenzhen Economic and Social Development Bulletin.

2.3. LEAP model

The LEAP method has been widely employed in the analysis of en-
ergy and environmental services, such as energy consumption fore-
casting and air pollution abatement (Cai et al., 2023; Emodi et al., 
2017). This model includes five branches from top to bottom: demand, 
sector, industry, type, and energy. Using mathematical functions, users 
can create various scenarios to represent the future development trend 
of energy intensities for different economic sectors. The LEAP model 
exhibits various advantages over other comparable models. In partic-
ular, it offers more comprehensive and detailed settings for different 
economic sectors, and it provides a highly structured and flexible system 
for data input (El-Sayed et al., 2023; Hu et al., 2019; Huang et al., 2023). 
The future energy consumption can be estimated as follows: 

Ef =
∑

j
ALj ∗ Ej (1) 

Ei,j = Ej ∗ Pi (2) 

where Ef signifies future energy consumption in sector f; ALj signifies the 
activity level of subsector j; Ej signifies the energy use intensity of sub-
sector j; Ei,j signifies the energy use intensity of energy source i in sub-
sector j; and Pi signifies the percentage of energy source i in future 
energy consumption.

We developed the LEAP model in accordance with the carbon 
emission characteristics in Shenzhen. Then, we used this model to 
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forecast Shenzhen’s future carbon emissions and energy-saving poten-
tial, with 2020 as the base year. Energy consumption in Shenzhen was 
categorized into six sectors based on local conditions: household 

consumption, agriculture, industry, tertiary sector (excluding trans-
portation), construction, and transportation. The detailed setting for 
each sector is presented in Table 1.

Fig. 1. Research framework for carbon neutrality scenario forecasting.

Table 1 
Detailed setting for each sector.

Sector Subsector Activity level Energy intensity Energy structure Emission factor

Household 
consumption

Residence Permanent population Energy consumption per 
unit of residential area

Proportion of nonfossil 
energy (electricity and heat) 
Proportion of fossil energy 
(coal, oil, gas)

CO2, CO, NO, NO2, CH4 

(residence, agriculture, forestry, 
animal husbandry, and fishing)

Lighting Number of lighting lamps Lighting energy 
consumption per unit

Proportion of nonfossil 
energy (electricity)

CO2, CO, NO

Agriculture – Value-added in agriculture Energy consumption per 
unit of value-added

Proportion of nonfossil 
energy (electricity and heat)

CO2, CO, NO, NO2, CH4 

(residence, agriculture, forestry, 
animal husbandry, and fishing)

Industry Direct 
consumption

Value-added in industry Energy consumption per 
unit of value-added

Proportion of nonfossil 
energy (electricity and heat) 
Proportion of fossil energy 
(coal, oil, gas)

CO2, CO, NO, NO2, CH4 

(energy and transportation sectors)

Indirect 
consumption

Amount of fossil fuels Fossil fuel energy 
consumption per unit

Proportion of fossil energy 
(coal, oil, gas)

Tertiary sector – Value-added in tertiary sector 
(excluding transportation)

Energy consumption per 
unit of value-added

Proportion of nonfossil 
energy (electricity and heat) 
Proportion of fossil energy 
(coal, oil, gas)

CO2, CO, NO, NO2, CH4 

(manufacturing and construction)

Construction – Value-added in construction 
sector

Energy consumption per 
unit of value-added

Proportion of nonfossil 
energy (electricity and heat) 
Proportion of fossil energy 
(coal, oil, gas)

CO2, CO, NO, NO2, CH4 

(manufacturing and construction)

Transportation – Value-added in transportation Energy consumption per 
unit of value-added

Proportion of nonfossil 
energy (electricity) 
Proportion of fossil energy 
(oil)

CO2, CO, NO, NO2, CH4 

(energy and transportation sectors)
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With 2050 as the target year, we created a baseline scenario, an 
energy-saving scenario, and a green scenario for forecasting future 
carbon emissions in Shenzhen based on the “Shenzhen Carbon Peaking 
Implementation Plan”. In accordance with the actions outlined in the 
plan, including the transition to green and low-carbon energy sources, 
energy conservation, carbon efficiency improvement, and technological 
empowerment for carbon peaking, we quantified specific targets, taking 
into account relevant policies in Shenzhen. Table 2 presents the specific 
descriptions for each scenario (Chai et al., 2022; Li, L. et al., 2023; Song, 
M. et al., 2023; Wang, S. et al., 2024). The baseline scenario depicts the 
continuation of current policies and technological development trends 
without additional adjustments or actions. The energy-saving scenario, 
which aims to realize the carbon peaking objective by approximately 
2030, envisages the implementation of more robust energy policies, 
including the application of specific energy-saving and emission abate-
ment plans to lower carbon emission intensity. The green scenario refers 
to the adoption of a maximum level of energy-saving and emission 
abatement plans, with the objective of accomplishing carbon neutrality 
by approximately 2050.

2.4. Land-use change modeling

This section introduces the PLUS method, outlines the specific set-
tings for land-use scenarios, and provides an overview of the method-
ology for calculating carbon stock density at the pixel scale.

2.4.1. PLUS method
The PLUS method integrates random forests and cellular automaton 

to forecast patch-level land-use changes (Liang et al., 2021). A number 
of elements, such as socioeconomic and natural environments, are 
simultaneously considered in this method. This method includes the 
Land Expansion Analysis Strategy (LEAS) and the Multi-type Random 
Seed (CARS). Compared with other methods, the PLUS method dem-
onstrates superior modeling accuracy while better capturing the land-
scape ecological implications of land-use patterns (Guo et al., 2023; He 
et al., 2023; Tian et al., 2022). We utilized the latest version of the PLUS 
software (V1.4) to conduct the experiments.

2.4.2. Land-use scenarios
Three land-use simulation scenarios (natural development, farmland 

protection, and ecological security) were designed according to future 
land-use planning in Shenzhen and previous relevant literature (Chen 
et al., 2025; Li et al., 2020; Li, Zhou and Gong, 2023; Liao et al., 2023; 
Rong et al., 2022). In addition, land-use area requirements were deter-
mined based on the latest land-use policies. No external constraints on 

land-use changes were included in the natural development condition. 
In the farmland protection condition, farmland area should not fall 
below the minimum requirement outlined in land-use policies. All 
land-use categories (excluding urban land) may change to farmland. The 
ecological protection scenario not only emphasizes economic develop-
ment but also comprehensively considers land-use structures for 
ecological, agricultural, and urban land. The probabilities for woodland, 
farmland, grassland, and water being changed as urban land decreased, 
and the eco-protection red lines and urban growth boundaries were 
utilized as constraints.

2.4.3. Parameter setting for the PLUS method
Considering the local conditions, data collinearity and availability 

(Chen & Feng, 2022; Guan et al., 2023; Huang et al., 2024; Ke et al., 
2018; Yao et al., 2023; Yu et al., 2018), elevation, slope, proximity to 
district centers, proximity to residential areas, proximity to express-
ways, proximity to subways, proximity to water, annual average NDVI, 
and population density were adopted as the influencing drivers behind 
land-use evolution in Shenzhen. In addition, the expansion intensity for 
each land-use category is reflected by the neighborhood weight ([0,1]), 
where a value closer to 1 represents a stronger intensity. The neigh-
borhood weight of every land-use category was determined according to 
manual adjustment and related studies (Liang et al., 2021; Lin et al., 
2023; Liu et al., 2017) (Table 3).

The optimal parameters were determined based on relevant studies 
(Guo et al., 2023; He et al., 2023; Tian et al., 2022) and manual tuning. 
First, the parameters in the LEAS module were configured as follows: the 
number of regression trees was set to 60, the sampling rate to 0.7, and 
the mTry to 8. Second, the parameters in the RMSE module were 
configured as follows: a patch generation threshold of 0.7, an expansion 
coefficient of 0.2, and a neighborhood size of 11.

A transformation expense matrix depicts the difficulty of trans-
forming a land-use pixel from the original land-use category to a tar-
geted category. This matrix exclusively comprises scores of either 0 or 1. 
A score of 0 signifies that this land-use category cannot be transformed 
to the targeted land-use category, and a score of 1 signifies that the 
transformations are permitted. We employed the Markov chain provided 
by the PLUS software to project future land-use demands. In addition, 
the transformation expense matrices corresponding to the three sce-
narios (Table S1 of the supplemental materials) were designed in 
accordance with Shenzhen’s land-use policies and scenario 
specifications.

2.5. Carbon stock density at the pixel scale

The carbon stock density at the pixel scale can be estimated based on 
NPP data. The fundamental assumption is that the carbon stock will 
generally increase with NPP (Liu et al., 2023; Schulze et al., 2010; Zhong 
et al., 2023). Previous studies have usually employed the InVEST 
method to estimate carbon stocks, which defines the average carbon 
stock density of every land-use category based on expert knowledge 
(Babbar et al., 2021; Jiang et al., 2017; Xiang et al., 2022). In reality, 
however, the carbon stock density for a specific land-use category is also 
altered by factors such as location and the surrounding environment at 
the pixel scale. Therefore, the local-scale carbon stock results derived 
from the InVEST model will be significantly different from the actual 
results if constant carbon stock densities are applied.

To address this problem, we used NPP data to determine dynamic 
carbon stock densities at the pixel scale, which will enhance the reli-
ability of carbon stock estimations. The conversion coefficients from 

Table 2 
Setting of the carbon emission forecasting scenarios for Shenzhen.

Scenario Description

Baseline scenario Historical trend of energy intensity is expected to continue, 
with an increase in residential energy consumption. However, 
the upgrades in industrial structure will lead to a slight 
reduction in energy intensity, along with a gradual increase in 
the share of eco-friendly energies including wind and solar 
power.

Energy-saving 
scenario

Energy-saving policies are implemented to help increase the 
share of eco-friendly energies and lower energy intensity. 
Increase technological investment in production so that energy 
intensity can meet the minimum criterion of national economic 
development target. The share of nonfossil fuels will reach 75 % 
after 2060.

Green scenario Develop wind and solar energy to their maximum potential 
before the maturity of new techniques, such as hydrogen and 
nuclear power. The goal is for nonfossil fuels to account for 35 
% of the total energy supply. Energy intensity should reach the 
degree of developed nations after 2030, and the share of 
nonfossil fuels should continue to grow. After 2060, the share of 
nonfossil fuels should exceed 80 %.

Table 3 
Neighborhood weight for each land-use category.

Farmland Woodland Grassland Water Urban land Other

0.25 0.1 0.4 0.85 1 0.7
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NPP to ecosystem carbon stocks for every land-use category were esti-
mated in light of previous related studies (Table S2). More specifically, 
these conversion coefficients were adapted to the conditions in China by 
Quan et al. (2023), building upon the thorough investigation using both 
top-down and bottom-up approaches (Schulze et al., 2010). Therefore, 
the estimation of carbon stocks based on these conversion coefficients 
can be considered highly reliable. In this regard, we can obtain the 
city-wide coverage of carbon stock densities at the pixel scale for each 
year. Finally, the land-use change outcomes forecasted through the 
PLUS method were overlaid with the carbon stock densities, and then 
the spatial distributions of the pixel-scale carbon stocks under the three 
land-use change scenarios were obtained.

3. Results

3.1. Carbon emission forecasting from 2020 to 2050

This study estimated Shenzhen’s carbon emissions in 2020 to be 
45.30 Mt using the LEAP model, which is consistent with the 45.42 Mt 
estimated by the China Urban Greenhouse Gas Working Group (http 
s://www.cityghg.com), with an error of approximately 0.26 %. This 
demonstrates the high reliability of the LEAP model calibrated in this 
study, which can be used to forecast future carbon emissions.

Carbon emissions in the baseline, energy-saving, and green scenarios 
are expected to reach their peaks at 55.0 Mt, 50.3 Mt and 48.5 Mt, 
respectively, in 2041, 2032, and 2028 (Fig. 2). The changes in carbon 
emissions under these three scenarios all exhibit an inverted U-shaped 
pattern, which continues to rise before the peak and then decline. The 
yearly growth rate of carbon emissions is significantly greater in the 
baseline scenario than in the energy-saving and green scenarios. Overall, 
as the share of coal shrinks, the shares of electricity and natural gas 
moderately increase, whereas the shares of other nonfossil fuels expe-
rience slow growth.

In the energy-saving scenario, advancements in new energy tech-
nologies persist, energy intensity decreases, and the share of electricity 
increases significantly. The carbon emissions in this scenario are fore-
casted to decrease to the emission level of 2020 (approximately 46.9 Mt) 

by 2050. In the green scenario, more significant changes occur with 
respect to the energy structure. The share of nonfossil fuels increases 
significantly annually, whereas the share of fossil fuels decreases, 
especially in the case of hard coal, other coals, and natural gas. By 2050, 
the share of nonfossil fuels will exceed the share of fossil fuels by 20 %, 
and carbon emissions will drop from 48.1 Mt in 2020 to 42.3 Mt in 2050.

3.2. Historical and future dynamics of land-use and carbon stocks

The objective of this subsection was to investigate the dynamics of 
land-use and carbon stocks during 2000–2015. Based on data from 
2010, the PLUS method was calibrated to forecast land use scenarios 
from 2020 to 2050. By integrating NPP and land use data, we calculated 
historical and future carbon stocks at the pixel scale.

3.2.1. Land-use changes
Shenzhen was primarily composed of woodland, urban land, and 

farmland (Fig. 3 and Table S3). Woodland accounted for the majority 
(>39 %) during 2000–2010. Nevertheless, the percentage of urban land 
exceeded that of woodland after 2010. Overall, farmland, woodland, 
grassland, and water areas all decreased during 2000–2015. Farmland 
and woodland experienced decreases of 7.46 % and 6.30 %, respec-
tively. By comparison, urban land exhibited the most rapid increase, 
with a growth rate of 13.81 %. Consequently, a considerable portion of 
farmland and woodland has been under encroachment.

3.2.2. Land-use evolution forecasting under various scenarios
We further simulated the land-use change during 2010–2015 and 

compared the outcomes with the actual land-use map. Our comparisons 
revealed that the kappa indicator was 0.96, the overall accuracy was 
97.6 %, and the FoM value was 0.1989. The FoM is a key performance 
indicator for the accuracy of land use simulation, ranging from 0 to 1. 
Higher FoM values indicate stronger agreement between model pre-
dictions and observed ground conditions (Chen et al., 2017; Yao et al., 
2017; Zhai et al., 2020; Zhuang et al., 2022). Therefore, the model 
demonstrates a high level of performance, implying that the modeling 
outcomes were reasonable and that the model could be utilized for 

Fig. 2. Forecasting of future carbon emissions and energy structure in Shenzhen.
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forecasting future land-use evolution. Next, we forecasted the land-use 
in 2025, 2035, and 2050 under the three scenarios (Fig. 4 and 
Table S4). We found that the proportions of farmland, woodland, and 
water will decrease, whereas the proportions of urban land will grow 
and the grassland area will remain relatively stable in the natural 
development condition. In the farmland protection condition, farmland 
reduction will occur at a considerably slower rate than in the other two 
scenarios, while there will be more woodland compared to the previous 
condition, and the grassland area will steadily decrease. This scenario 
effectively alleviates farmland loss while providing partial protection for 
ecological land. Additionally, farmland exhibits the highest reduction 
rate, followed by grassland, while woodland experiences slower decline 
compared to the other conditions, the growth rate of urban land will 

accelerate significantly, and the areas of water will remain relatively 
stable in the ecological security scenario. Although urban land may still 
encroach on some ecological land due to socioeconomic development, 
the regulations for protecting ecological land remain intact.

3.2.3. Changes in carbon stocks
We further estimated Shenzhen’s carbon stocks in 2000, 2005, 2010, 

and 2015 (Table 4). The total carbon stocks decreased by 133.04 × 104 t 
over these years, showing a sharp downward trend. The greatest drop in 
carbon stocks occurred between 2000 and 2005, after which the 
deceleration became slower. Notably, vegetation carbon stocks showed 
a decreasing trend at first and then increased, with the minimum value 
in 2005 being 129.79 × 104 t Soil carbon stocks also showed a 

Fig. 3. Land-use maps for Shenzhen during 2000–2015.

Fig. 4. Land-use forecasting results under different scenarios.
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decreasing trend over these years.

3.2.4. Carbon stock forecasting in various scenarios
In the natural development scenario, vegetation carbon stocks are 

projected to initially increase and then decrease, showing a stabilization 
trend. In addition, soil carbon stocks will decline (with a decline rate of 
0.16 %). For the farmland protection scenario, carbon stocks show a 
downward trend. Specifically, vegetation carbon stocks show an in-
crease during 2015–2030, but will slightly decline from 2030 to 2050. 
Moreover, soil carbon stocks are projected to decrease by 35.41 × 104 t 
In the ecological security scenario, there will be a downward trend in 
overall carbon stocks, with a total decrease of approximately 24.79 ×
104 t Specifically, vegetation carbon stocks will increase by 0.8 × 104 t, 
while soil carbon stocks will decrease by 25.58 × 104 t (Table 5).

3.3. Scenario analysis of carbon neutrality in Shenzhen

Nine carbon neutrality scenarios were obtained by integrating the 
above three land-use scenarios and carbon emission scenarios, namely, 
natural-baseline, natural-energy-saving, natural-green, farmland-base-
line, farmland-energy-saving, farmland-green, ecological-baseline, 
ecological-energy-saving, and ecological-green. The objective is to 
analyze the potential for achieving carbon neutrality with or without the 
support of CCUS technology.

3.3.1. Carbon neutrality forecasting without CCUS
It is evident that a discrepancy exists between the various scenarios 

and the ultimate objective of carbon neutrality under this pathway 
(without CCUS). Fig. 5 shows that no situation will accomplish the 
carbon neutrality goal by relying only on ecosystem carbon stocks. 
Although the carbon emissions in all scenarios will decrease through 
decreasing energy intensity and raising the share of eco-friendly en-
ergies, there are still considerable gaps between carbon emissions and 
carbon stocks. Ecosystem carbon stocks will inevitably decrease due to 
socioeconomic development. Therefore, achieving carbon neutrality 
depends greatly on reducing carbon emissions. While carbon emissions 
will decrease through the implementation of reduction measures and 
technological advancements, CCUS technology is still urgently needed.

3.3.2. Carbon neutrality forecasting with CCUS
CCUS technology is critical for carbon neutrality. Therefore, we set 

the minimum, moderate, and maximum contribution rates of CCUS 

technology based on reports from Development Research Center of 
Chinese National Council, CCUS report from National Bureau of Ecology 
and Environment, and local conditions (Cai et al., 2023; Chuai et al., 
2022; Li, L. et al., 2023) (Table 6 and Fig. 6). Under the maximum 
contribution rate of CCUS, carbon neutrality could be accomplished by 
approximately 2050 in the natural-green, farmland-green, and 
ecological-energy-saving scenarios, while under the ecological-green 
scenario, carbon neutrality could be accomplished by approximately 
2045. Our results reveal a substantial reduction in carbon emissions, and 
all scenarios have the potential to achieve carbon neutrality by consid-
ering CCUS technology.

3.4. Discussions

This study makes a notable contribution to energy management by 
developing a novel framework (integration of the LEAP and PLUS 
models) for forecasting diverse carbon neutrality scenarios and 
exploring the effects of land use change on carbon stocks. This approach 
would facilitate a comprehensive understanding of the pathways and 
potential to achieve future carbon neutrality goals. The energy structure 
in the study area will undergo a significant transformation between 
2020 and 2050, with a constant growth in the share of electricity con-
sumption and an apparent drop in the share of fossil energy consump-
tion. Such a change in energy structures is anticipated to cause an initial 
increase in carbon emissions, with a subsequent decline across all pro-
jected scenarios. In the baseline, energy-saving, and green scenarios, 
carbon emissions are expected to reach their respective peaks of 55.0 Mt, 
50.3 Mt, and 48.5 Mt in 2041, 2032, and 2028. Likewise, Jiang et al. 
(2023) utilized the LEAP model to forecast that Shenzhen’s carbon 
emissions will peak between 2025 and 2027. But more importantly, the 
extensive expansion of urban land in Shenzhen during the past twenty 
years has led to the continuous degradation of ecosystems such as 
woodlands, grasslands, and farmlands.

Land use change has been identified as a primary factor influencing 
carbon stocks. In comparison to previous studies, we proposed a new 
methodology that integrates dynamic future land-use and NPP data to 
forecast carbon stocks. This approach yielded a more accurate spatial 
distribution of carbon stocks than the panel data results obtained 
through alternative methods. Shenzhen has undergone significant urban 
expansion in recent decades, resulting in a decline in ecological land use, 
including farmland, woodland, and grassland. This decline has exerted a 
substantial adverse effect on carbon stocks. In the natural development 
scenario, Shenzhen’s overall carbon stocks showed an obvious down-
ward trend, with both vegetation and soil carbon stocks decreasing from 
2015 to 2050. Vegetation carbon stocks exhibit relative stability. 
Conversely, in the farmland protection and ecological security scenarios, 
vegetation carbon stocks show an upward trend, which is mainly caused 
by the increase in agricultural and ecological land. The decline rate of 
soil carbon stocks exhibits a significant deceleration, which has conse-
quently led to a corresponding slowing in the decline rate of overall 
carbon stocks. This result is generally in agreement with the outcomes 
obtained by Rong et al. (2022), who discovered a close association be-
tween land-use evolution and carbon emissions. In addition, Wang, C. 
et al. (2024) simulated the future carbon emissions and land-use evo-
lution of Shenzhen by coupling an improved RF-CA-Markov with the 
InVEST model. The research revealed that the transition from 
high-carbon-stock land-use types (e.g., forestland) to low-carbon-stock 
categories (e.g., urban land) is the crucial factor driving the decline in 
regional ecosystem carbon stocks. This finding highlights the pivotal 
role of land-use transformation in regulating carbon stocks capacity 
during rapid urbanization processes.

Despite the significant effects of land-use change on carbon stocks, 
achieving carbon neutrality in urban areas cannot rely solely on 
increasing carbon stocks. The findings of this study demonstrated that 
even under scenarios of farmland protection and ecological security, the 
increase in carbon stocks is impossible to fully compensate for the rise in 

Table 4 
Changes in carbon stocks in Shenzhen (× 104 t).

Vegetation carbon stocks Soil carbon stocks Overall carbon stocks

2000 147.09 790.94 938.03
2005 129.79 728.19 857.98
2010 142.20 670.88 813.08
2015 145.90 659.08 804.99

Table 5 
Carbon stock forecasting results under different scenarios (× 104 t).

Scenario Vegetation carbon 
stocks

Soil carbon 
stocks

Overall carbon 
stocks

2025 S1 145.85 647.58 793.43
S2 147.28 650.38 797.66
S3 147.35 650.35 797.70

2035 S1 146.58 634.33 780.90
S2 147.02 638.41 785.43
S3 147.09 643.23 790.32

2050 S1 145.60 621.48 767.47
S2 146.51 623.67 770.18
S3 146.70 633.50 780.20

Note: S1-S3 represent the natural development, farmland protection, and 
ecological security scenarios, respectively.
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carbon emissions. Therefore, this study presented a more informative 
analysis for carbon neutrality goals by simultaneously considering CCUS 
technology. After CCUS technology with the maximum contribution rate 
is considered, carbon neutrality could be accomplished by approxi-
mately 2050 in the natural-green, farmland-green, ecological-energy- 
saving, and ecological-green scenarios. Overall, the ecological-energy- 
saving scenario provides the optimal pathway for maintaining eco-
nomic development and optimizing land-use simultaneously. 
Conversely, the natural-baseline scenario indicates a warning signal for 
regional development. That is, achieving an equilibrium between urban 
growth and preservation is an increasingly pressing issue in large cities 
(Liu et al., 2020; Luo et al., 2023). By simulating the energy consump-
tion and carbon emissions for multiple sectors, earlier research has 
highlighted the necessity of reducing the energy consumed per unit of 
gross domestic product, optimizing industrial structure, and increasing 
the share of clean energies (Simsek et al., 2020; Zhang, G. et al., 2024). 
Therefore, controlling the shrinkage of ecological land (woodland and 
grassland) in high-carbon stock areas while also reducing energy in-
tensity and increasing the share of nonfossil fuels are critical keys to 
accomplishing carbon neutrality goals (Cui et al., 2023; Xu et al., 2023).

From a practical point of view, the scenarios presented in both the 
LEAP and PLUS models are based on the latest policies enacted in 
Shenzhen, rather than using general scenarios such as a 100 % renew-
able energy system, Representative Concentration Pathways, or Shared 
Socioeconomic Pathways. In other words, the scenarios presented in this 
study are more closely aligned with future development trajectories and 

actual conditions, making them more informative for policy making. 
Furthermore, the PLUS method was developed using historical data 
during 2010–2015 and the latest situation in 2020, incorporating leg-
islative policy constraints such as environmental protection zones and 
water, which substantially improves the rationality of the forecasting 
results.

Our results can also aid in decision-making on low-carbon urban 
planning and energy structure transformation. In terms of land-use, 
Shenzhen still has great potential for enhancing transportation and in-
dustrial land-use efficiency compared with other major international 
cities, such as Tokyo and Manhattan (Lu et al., 2024). As the biggest 
consumer of various oil products in Shenzhen, the transportation sector 
can significantly reduce fuel consumption by enhancing land use effi-
ciency. In addition, land-use planning should prioritize the protection of 
ecological land, especially in areas with high carbon stocks. The local 
government must establish ecological protection redlines to safeguard 
ecological land. In future land planning, strict measures should be 
enforced to minimize encroachment on ecological land and ensure its 
preservation. Regarding energy consumption, authorities need to 
maximize energy efficiency and lower carbon emission intensity while 
raising the share of eco-friendly energies, including wind and solar 
power. In particular, increasing investment in the development of CCUS 
technology is extremely important for low-carbon development (Jiang 
et al., 2023; Zhang, J. et al., 2024). Additionally, targeted policies can be 
actively developed for energy-intensive enterprises to accelerate their 
energy transition and achieve low-carbon, efficient development (Liu 
et al., 2024; Wang et al., 2023). More importantly, our comprehensive 
forecasting results allow for more quantitative and precise 
decision-making by local governments, such as determining the scale of 
energy restructuring and allocating detailed investment funds for CCUS 
technology (Cai et al., 2024; Khajavi & Rastgoo, 2023).

The carbon neutrality scenario forecasting performed in this study 
still has several limitations. First, the driving factors behind land-use 
change may not be sufficient due to regional differences. Second, the 

Fig. 5. Carbon neutrality forecasting under nine scenarios (without CCUS).

Table 6 
Carbon emission reduction capacity of CCUS.

Contribution rate 2025 2030 2040 2050

Minimum 18 % 30 % 52 % 65 %
Moderate 25 % 42 % 66 % 75 %
Maximum 30 % 60 % 75 % 85 %
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accuracy of the vegetation carbon stock estimation may be affected by 
the quality of the NPP data. Third, industrial economic activities 
(including metallurgical engineering, real property, traffic, iron and 
steel) were not further subclassified in the LEAP model. Future studies 
should aim to forecast the detailed carbon emissions for each sector. 
Furthermore, although environmental factors were considered in the 
land-use change simulation for each scenario, we did not explicitly 
incorporate land-use scenarios based on environmental change to fully 
account for the effects of environmental change on NPP. This limitation 
may lead to discrepancies between the predicted and actual carbon 
stocks, as future environmental change may alter the dynamics of NPP 
and consequently, carbon stock estimations. Future research endeavors 
should aim to integrate climate change scenarios into land-use modeling 
to further enhance the accuracy of carbon stock predictions under 
evolving environmental conditions. Finally, there is absence of sub-
stantial integration between the LEAP and PLUS models. At present, the 
two models face great challenges in terms of data compatibility and 
model complexity. In future research, we plan to explore ways to deepen 
the integration of the LEAP and PLUS models through the development 
of intermediate platforms, data standardization, and enhanced data- 
sharing mechanisms.

4. Conclusions

Carbon neutrality is a crucial step toward global energy restructuring 
and sustainable urban development. Forecasting future changes in car-
bon emissions and carbon stocks is an important task that can help 
achieve this goal and significantly contribute to low-carbon planning. 
Although many countries have announced timelines for the carbon 
neutrality goal, the benchmark for the “carbon peak” has not been 
specified. While some efforts have been made, there remains a defi-
ciency in the systematic integration of carbon emission forecasting with 
carbon stock forecasting.

To tackle these issues, we proposed a novel framework for the 

scenario forecasting of carbon neutrality by coupling the LEAP and PLUS 
models. The effects of land-use change on carbon stocks and the path-
ways to carbon neutrality were examined through a combined analysis 
of carbon emission forecasting, carbon stock forecasting, and CCUS 
technology. Future carbon stocks were estimated by considering the 
changes in land-use conditions and NPP. First, the LEAP model was 
utilized to forecast Shenzhen’s carbon emissions during 2020–2050 in 
the baseline, energy-saving, and green scenarios. Second, the PLUS 
method was utilized to forecast land-use in 2050 in the natural devel-
opment, farmland protection, and ecological security scenarios. Then, 
the vegetation and soil carbon stocks were estimated based on the NPP 
data. Finally, we analyzed the potential of using CCUS technology to 
achieve carbon neutrality under nine integrated scenarios.

By forecasting carbon neutrality pathways under different scenarios, 
we can explore when carbon emissions will peak and the corresponding 
peak levels. Identifying pathways could also provide decision support 
for urban emission reduction policies. In particular, we can examine the 
route that minimizes the cost of reducing emissions and the necessary 
policy support to achieve carbon neutrality. Therefore, the proposed 
methodological framework is expected to offer practical implications 
and technical assistance for energy structure transformation and sus-
tainable urban design. Although this framework was tested only in 
Shenzhen, it could be flexibly reused for carbon neutrality forecasting in 
many other regions.

CRediT authorship contribution statement

Xinyan Zhao: Writing – original draft, Formal analysis. Zhijie Rao: 
Methodology, Investigation, Data curation. Jinyao Lin: Writing – re-
view & editing, Supervision, Resources. Xinchang Zhang: Validation, 
Project administration, Funding acquisition.

Fig. 6. Carbon neutrality forecasting under nine scenarios (with CCUS).

X. Zhao et al.                                                                                                                                                                                                                                    Sustainable Cities and Society 125 (2025) 106367 

9 



Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

This study was supported by the Humanities and Social Science Fund 
of the Ministry of Education of China (Grant No. 23YJCZH125), 
Guangdong Basic and Applied Basic Research Foundation (Grant No. 
2023A1515030300), and National Natural Science Foundation of China 
(Grant No. 42371406).

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.scs.2025.106367.

Data availability

Data will be made available on request.

References

Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2021). 
Assessment and prediction of carbon sequestration using Markov chain and InVEST 
model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278, Article 
123333.

Bordoloi, R., Das, B., Tripathi, O. P., Sahoo, U. K., Nath, A. J., Deb, S., Das, D. J., 
Gupta, A., Devi, N. B., Charturvedi, S. S., Tiwari, B. K., Paul, A., & Tajo, L. (2022). 
Satellite based integrated approaches to modelling spatial carbon stock and carbon 
sequestration potential of different land uses of Northeast India. Environmental and 
Sustainability Indicators, 13, Article 100166.

Cai, L., Luo, J., Wang, M., Guo, J., Duan, J., Li, J., Li, S., Liu, L., & Ren, D. (2023). 
Pathways for municipalities to achieve carbon emission peak and carbon neutrality: 
A study based on the LEAP model. Energy, 262, Article 125435.

Cai, M., Shi, Y., & Ren, C. (2020). Developing a high-resolution emission inventory tool 
for low-carbon city management using hybrid method – A pilot test in high-density 
Hong Kong. Energy and Buildings, 226, Article 110376.

Cai, Y., Su, S., Zhang, P., Chen, M., Wang, Y., Xie, Y., & Tan, Q. (2024). Quantifying high- 
resolution carbon emissions driven by land use change in the Guangdong-Hong 
Kong-Macao Greater Bay Area. Urban Climate, 55, Article 101943.

Campbell, A. D., Fatoyinbo, T., Charles, S. P., Bourgeau-Chavez, L. L., Goes, J., 
Gomes, H., Halabisky, M., Holmquist, J., Lohrenz, S., Mitchell, C., Moskal, L. M., 
Poulter, B., Qiu, H., Resende De Sousa, C. H., Sayers, M., Simard, M., Stewart, A. J., 
Singh, D., Trettin, C., Wu, J., Zhang, X., & Lagomasino, D. (2022). A review of carbon 
monitoring in wet carbon systems using remote sensing. Environmental Research 
Letters, 17(2), Article 025009.

Cao, M., Zhu, Y., Quan, J., Zhou, S., Lü, G., Chen, M., & Huang, M. (2019). Spatial 
sequential modeling and predication of global land use and land cover changes by 
integrating a global change assessment model and cellular automata. Earth’s Future, 
7(9), 1102–1116.

Chai, Z., Yan, Y., Simayi, Z., Yang, S., Abulimiti, M., & Wang, Y. (2022). Carbon 
emissions index decomposition and carbon emissions prediction in Xinjiang from the 
perspective of population-related factors, based on the combination of STIRPAT 
model and neural network. Environmental Science and Pollution Research, 29(21), 
31781–31796.

Chen, Y., & Feng, M. (2022). Urban form simulation in 3D based on cellular automata 
and building objects generation. Building and Environment, 226, Article 109727.

Chen, Y., Li, X., Liu, X., Zhang, Y., & Huang, M. (2019). Quantifying the teleconnections 
between local consumption and domestic land uses in China. Landscape and Urban 
Planning, 187, 60–69.

Chen, Y., Xiaoping, L., & Li, X. (2017). Calibrating a Land Parcel Cellular Automaton (LP- 
CA) for urban growth simulation based on ensemble learning. International Journal of 
Geographical Information Science, 31(12), 2480–2504.

Chen, Y., Zhang, F., & Lin, J. (2025). Projecting future land use evolution and its effect on 
spatiotemporal patterns of habitat quality in China. Applied Sciences, 15(3), 1042.

Chuai, X., Xia, M., Xiang, A., Miao, L., Zhao, R., & Zuo, T. (2022). Vegetation coverage 
and carbon sequestration changes in China’s forest projects area. Global Ecology and 
Conservation, 38, Article e02257.

Cui, L., Tang, W., Zheng, S., & Singh, R. P. (2023). Ecological protection alone is not 
enough to conserve ecosystem carbon storage: Evidence from Guangdong. China. 
Land, 12(1), 111.

Du, Q., Wan, Z., Yang, M., Wang, X., & Bai, L. (2024). Dynamic integrated simulation of 
carbon emission reduction potential in China’s building sector. Sustainable Cities and 
Society, 116, Article 105944.

El-Sayed, A. H. A., Khalil, A., & Yehia, M. (2023). Modeling alternative scenarios for 
Egypt 2050 energy mix based on LEAP analysis. Energy, 266, Article 126615.

Emodi, N. V., Emodi, C. C., Murthy, G. P., & Emodi, A. S. A. (2017). Energy policy for low 
carbon development in Nigeria: A LEAP model application. Renewable and 
Sustainable Energy Reviews, 68, 247–261.

Feng, K., Davis, S. J., Sun, L., & Hubacek, K. (2015). Drivers of the US CO2 emissions 
1997–2013. Nature Communications, 6(1), 7714.

Feng, Y., Lei, Z., Tong, X., Gao, C., Chen, S., Wang, J., & Wang, S. (2020). Spatially- 
explicit modeling and intensity analysis of China’s land use change 2000–2050. 
Journal of Environmental Management, 263, Article 110407.

Ghafoor, G. Z., Sharif, F., Shahid, M. G., Shahzad, L., Rasheed, R., & Khan, A. U. H. 
(2022). Assessing the impact of land use land cover change on regulatory ecosystem 
services of subtropical scrub forest, Soan Valley Pakistan. Scientific Reports, 12(1), 
Article 10052.

Guan, Q., Shi, X., Huang, M., & Lai, C. (2016). A hybrid parallel cellular automata model 
for urban growth simulation over GPU/CPU heterogeneous architectures. 
International Journal of Geographical Information Science, 30(3), 494–514.

Guan, X., Li, J., Yang, C., & Xing, W. (2023). Development process, quantitative models, 
and future directions in driving analysis of urban expansion. ISPRS International 
Journal of Geo-Information, 12(4), 174.

Guo, P., Wang, H., Qin, F., Miao, C., & Zhang, F. (2023). Coupled MOP and PLUS-SA 
model research on land use scenario simulations in Zhengzhou Metropolitan Area, 
Central China. Remote Sensing, 15(15), 3762.

He, C., Gao, B., Huang, Q., Ma, Q., & Dou, Y. (2017). Environmental degradation in the 
urban areas of China: Evidence from multi-source remote sensing data. Remote 
Sensing of Environment, 193, 65–75.

He, N., Guo, W., Wang, H., Yu, L., Cheng, S., Huang, L., Jiao, X., Chen, W., & Zhou, H. 
(2023). Temporal and spatial variations in landscape habitat quality under multiple 
land-use/land-cover scenarios based on the PLUS-InVEST model in the Yangtze River 
Basin, China. Land, 12(7), 1338.

He, Q., Zhou, J., Tan, S., Song, Y., Zhang, L., Mou, Y., & Wu, J. (2020). What is the 
developmental level of outlying expansion patches? A study of 275 Chinese cities 
using geographical big data. Cities, 105, Article 102395.

Hu, G., Ma, X., & Ji, J. (2019). Scenarios and policies for sustainable urban energy 
development based on LEAP model – A case study of a postindustrial city: Shenzhen 
China. Applied Energy, 238, 876–886.

Huang, Q., Liu, Z., He, C., Gou, S., Bai, Y., Wang, Y., & Shen, M. (2020). The occupation 
of cropland by global urban expansion from 1992 to 2016 and its implications. 
Environmental Research Letters, 15(8), Article 084037.

Huang, Y., Lin, J., He, X., Lin, Z., Wu, Z., & Zhang, X. (2024). Assessing the scale effect of 
urban vertical patterns on urban waterlogging: An empirical study in Shenzhen. 
Environmental Impact Assessment Review, 106, Article 107486.

Huang, Y., Wang, Y., Peng, J., Li, F., Zhu, L., Zhao, H., & Shi, R. (2023). Can China 
achieve its 2030 and 2060 CO2 commitments? Scenario analysis based on the 
integration of LEAP model with LMDI decomposition. Science of The Total 
Environment, 888, Article 164151.

Iqbal, W., Yumei, H., Abbas, Q., Hafeez, M., Mohsin, M., Fatima, A., Jamali, M. A., 
Jamali, M., Siyal, A., & Sohail, N. (2019). Assessment of wind energy potential for 
the production of renewable hydrogen in Sindh Province of Pakistan. Processes, 7(4), 
196.

Jiang, J., Ye, B., Sun, Z., Zeng, Z., & Yang, X. (2023). Low-carbon energy policies benefit 
climate change mitigation and air pollutant reduction in megacities: An empirical 
examination of Shenzhen, China. Science of The Total Environment, 892, Article 
164644.

Jiang, W., Deng, Y., Tang, Z., Lei, X., & Chen, Z. (2017). Modelling the potential impacts 
of urban ecosystem changes on carbon storage under different scenarios by linking 
the CLUE-S and the InVEST models. Ecological Modelling, 345, 30–40.

Ke, X., van Vliet, J., Zhou, T., Verburg, P. H., Zheng, W., & Liu, X. (2018). Direct and 
indirect loss of natural habitat due to built-up area expansion: A model-based 
analysis for the city of Wuhan, China. Land Use Policy, 74, 231–239.

Khajavi, H., & Rastgoo, A. (2023). Predicting the carbon dioxide emission caused by road 
transport using a random forest (RF) model combined by meta-heuristic algorithms. 
Sustainable Cities and Society, 93, Article 104503.

Lai, L., Huang, X., Yang, H., Chuai, X., Zhang, M., Zhong, T., Chen, Z., Chen, Y., Wang, X., 
& Thompson, J. R. (2016). Carbon emissions from land-use change and management 
in China between 1990 and 2010. Science Advances, 2(11), Article e1601063.

Launay, C., Constantin, J., Chlebowski, F., Houot, S., Graux, A. I., Klumpp, K., Martin, R., 
Mary, B., Pellerin, S., & Therond, O. (2021). Estimating the carbon storage potential 
and greenhouse gas emissions of French arable cropland using high-resolution 
modeling. Global Change Biology, 27(8), 1645–1661.

Li, B., Yang, Z., Cai, Y., Xie, Y., Guo, H., Wang, Y., Zhang, P., Li, B., Jia, Q., Huang, Y., & 
Qi, Z. (2022). Prediction and valuation of ecosystem service based on land use/land 
cover change: A case study of the Pearl River Delta. Ecological Engineering, 179, 
Article 106612.

Li, F., Li, Z., Chen, H., Chen, Z., & Li, M. (2020). An agent-based learning-embedded 
model (ABM-learning) for urban land use planning: A case study of residential land 
growth simulation in Shenzhen, China. Land Use Policy, 95, Article 104620.

Li, L., Li, J., Peng, L., Wang, X., & Sun, S. (2023). Optimal pathway to urban carbon 
neutrality based on scenario simulation: A case study of Shanghai, China. Journal of 
Cleaner Production, 416, Article 137901.

Li, X., Zhou, Y., & Gong, P. (2023). Diversity in global urban sprawl patterns revealed by 
Zipfian dynamics. Remote Sensing Letters, 14(6), 565–575.

Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B., & Yao, Y. (2021). Understanding the 
drivers of sustainable land expansion using a patch-generating land use simulation 
(PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban 
Systems, 85, Article 101569.

X. Zhao et al.                                                                                                                                                                                                                                    Sustainable Cities and Society 125 (2025) 106367 

10 

https://doi.org/10.1016/j.scs.2025.106367
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0001
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0001
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0001
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0001
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0002
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0002
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0002
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0002
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0002
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0003
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0003
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0003
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0004
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0004
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0004
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0005
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0005
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0005
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0006
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0006
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0006
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0006
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0006
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0006
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0007
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0007
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0007
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0007
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0008
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0008
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0008
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0008
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0008
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0009
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0009
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0010
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0010
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0010
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0011
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0011
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0011
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0012
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0012
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0013
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0013
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0013
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0014
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0014
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0014
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0015
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0015
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0015
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0016
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0016
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0017
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0017
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0017
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0018
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0018
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0019
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0019
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0019
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0020
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0020
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0020
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0020
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0021
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0021
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0021
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0022
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0022
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0022
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0023
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0023
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0023
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0024
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0024
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0024
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0025
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0025
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0025
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0025
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0026
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0026
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0026
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0027
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0027
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0027
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0028
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0028
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0028
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0029
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0029
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0029
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0030
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0030
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0030
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0030
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0031
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0031
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0031
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0031
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0032
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0032
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0032
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0032
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0033
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0033
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0033
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0034
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0034
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0034
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0035
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0035
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0035
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0036
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0036
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0036
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0037
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0037
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0037
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0037
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0038
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0038
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0038
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0038
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0039
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0039
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0039
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0040
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0040
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0040
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0041
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0041
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0042
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0042
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0042
http://refhub.elsevier.com/S2210-6707(25)00243-4/sbref0042


Liang, X., Zhan, W., Li, X., & Deng, F. (2024). Unveiling causal dynamics and forecasting 
of urban carbon emissions in major emitting economies through multisource 
interaction. Sustainable Cities and Society, 105, Article 105326.

Liao, J., Tang, L., & Shao, G. (2023). Coupling random forest, allometric scaling, and 
cellular automata to predict the evolution of LULC under various shared 
socioeconomic pathways. Remote Sensing, 15(8), 2142.

Lin, B., & Zhu, J. (2021). Impact of China’s new-type urbanization on energy intensity: A 
city-level analysis. Energy Economics, 99, Article 105292.

Lin, J., Li, X., Wen, Y., & He, P. (2023). Modeling urban land-use changes using a 
landscape-driven patch-based cellular automaton (LP-CA). Cities, 132, Article 
103906.

Lin, J., Wang, Y., Lin, Z., & Li, S. (2025). National-scale connectivity analysis and 
construction of forest networks based on graph theory: A case study of China. 
Ecological Engineering, 216, Article 107639.

Liu, H., Yin, W., Yan, F., Cai, W., Du, Y., & Wu, Y. (2024). A coupled STIRPAT-SD model 
method for land-use carbon emission prediction and scenario simulation at the 
county level. Environmental Impact Assessment Review, 108, Article 107595.

Liu, J., Yan, Q., & Zhang, M. (2023). Ecosystem carbon storage considering combined 
environmental and land-use changes in the future and pathways to carbon neutrality 
in developed regions. Science of The Total Environment, 903, Article 166204.

Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K., Ziegler, A. D., Chen, A., 
Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., & Zeng, Z. 
(2020). High-spatiotemporal-resolution mapping of global urban change from 1985 
to 2015. Nature Sustainability, 3(7), 564–570.

Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., & Pei, F. (2017). A future 
land use simulation model (FLUS) for simulating multiple land use scenarios by 
coupling human and natural effects. Landscape and Urban Planning, 168, 94–116.

Lu, S., Xiao, Y., Lu, Y., & Lin, J. (2024). Spatialization of electricity consumption by 
combining high-resolution nighttime light remote sensing and urban functional 
zoning information. Geo-spatial Information Science, 1–14.

Luo, H., Li, Y., Gao, X., Meng, X., Yang, X., & Yan, J. (2023). Carbon emission prediction 
model of prefecture-level administrative region: A land-use-based case study of Xi’an 
city. China. Applied Energy, 348, Article 121488.

Mahmood, H., Furqan, M., Hassan, M. S., & Rej, S. (2023a). The environmental Kuznets 
curve (EKC) hypothesis in China: A review. Sustainability, 15(7), 6110.

Mahmood, H., Saqib, N., Adow, A. H., & Abbas, M. (2023b). Oil and natural gas rents and 
CO2 emissions nexus in MENA: Spatial analysis. PeerJ, 11, Article e15708.

Mohsin, M., Ullah, H., Iqbal, N., Iqbal, W., & Taghizadeh-Hesary, F. (2021). How external 
debt led to economic growth in South Asia: A policy perspective analysis from 
quantile regression. Economic Analysis and Policy, 72, 423–437.

Quan, Y., Hutjes, R. W. A., Biemans, H., Zhang, F., Chen, X., & Chen, X. (2023). Patterns 
and drivers of carbon stock change in ecological restoration regions: A case study of 
upper Yangtze River Basin. China. Journal of Environmental Management, 348, Article 
119376.

Rong, T., Zhang, P., Zhu, H., Jiang, L., Li, Y., & Liu, Z. (2022). Spatial correlation 
evolution and prediction scenario of land use carbon emissions in China. Ecological 
Informatics, 71, Article 101802.

Schulze, E. D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I. A., 
Thiruchittampalam, B., Theloke, J., Saurat, M., Bringezu, S., Lelieveld, J., Lohila, A., 
Rebmann, C., Jung, M., Bastviken, D., Abril, G., Grassi, G., Leip, A., Freibauer, A., 
Kutsch, W., Don, A., Nieschulze, J., Börner, A., Gash, J. H., & Dolman, A. J. (2010). 
The European carbon balance. Part 4: Integration of carbon and other trace-gas 
fluxes. Global change biology, 16(5), 1451–1469.

Sha, W., Chen, Y., Wu, J., & Wang, Z. (2020). Will polycentric cities cause more CO2 
emissions? A case study of 232 Chinese cities. Journal of Environmental Sciences, 96, 
33–43.
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